
Embedding EUROPA

Embedding EUROPA
Using the C++ API1.
Using the JAVA API2.
Building your own project3.

1.

Embedding EUROPA
EUROPA comes with a tool called makeproject, which will generate C++ and Java projects for you.

They both illustrate how you can perform the full application cycle :

Initialize EUROPA1.
Load/Modify model and initial state descriptions2.
Invoke a solver3.
Extract plan results from the Plan Database4.
Repeat steps 2-4 as many times as needed5.
Shutdown EUROPA6.

Using the C++ API

Take a look at the main() program that makeproject generates for the C++ project : Main.cc

You have 2 options to implement the application cycle described above :

The PSEngine interface is a client interface, it's very straightforward and allows you to run the application
cycle described above, although there is a small performance penalty, and it doesn't give access to the
internal modules of EUROPA

•

The EuropaEngine interface gives access to the internal modules of EUROPA but you will have to spend
more time understanding the different classes, probably write more code to extract information from the
Plan Database and be more careful about the calls that you make. EuropaEngine is a base class to the
PSEngine instances that you get from PSEngine::makeInstance() calls, so you can always dynamic_cast a
PSEngine instance to a EuropaEngine one.

•

You will probably want to start with the PSEngine interface and if it is doesn't give you sufficient low-level access
(this should be rare, except for very advanced applications) for your purpose switch to the EuropaEngine interface
(just do a dynamic cast as described above). Eventually the PSEngine interface will be extended to expose all the
extension points in EUROPA and external clients should never have to use EuropaEngine.

Using the JAVA API

The PSEngine interface is automatically mapped to Java using SWIG
Take a look at the main() program that makeproject generates for the Java project : Main.java
makeproject uses a combination of Java and BeanShell scripting to achieve its goal, if you put everything together
in a single Java program it would look something like this :

Embedding EUROPA 1

http://www.swig.org
http://www.beanshell.org

import org.ops.ui.util.LibraryLoader;
import psengine.*;

class Main
{
 public static void main(String args[])
 {
 String debugMode = args[0];
 String nddlFilename = args[1];

 PSEngine.initialize();

 PSEngine europa = makePSEngine(debugMode);
 europa.start();
 europa.executeScript("nddl",nddlFilename,true/*isFile*/);
 runSolver(europa);
 europa.shutdown();

 PSEngine.terminate();
 }

 /*
 * debugMode = "g" for debug, "o" for optimized
 */
 static PSEngine makePSEngine(String debugMode)
 {
 PSEngine psEngine;
 LibraryLoader.loadLibrary("System_"+debugMode);
 psEngine = PSEngine.makeInstance();

 return psEngine;
 }

 static void runSolver(PSEngine europa)
 {
 String plannerConfig = "PlannerConfig.xml";
 int startHorizon=0, endHorizon=100;

 PSSolver solver = europa.createSolver(plannerConfig);
 solver.configure(startHorizon,endHorizon);

 int maxSteps = 1000;
 for (int i = 0; !solver.isExhausted() && !solver.isTimedOut() && i<maxSteps; i = solver->getStepCount()) {
 solver.step();
 if (solver.getFlaws().size() == 0)
 break; // we're done!
 }

 if (solver->isExhausted()) debugMsg("Solver was exhausted after " + i + " steps");
 else if (solver.isTimedOut()) debugMsg("Solver timed out after " + i + " steps");
 else debugMsg("Main","Solver finished after " << i << " steps");
 }

 static void debugMsg(String msg)
 {
 System.out.println(msg);
 }
}

Using the JAVA API 2

Building your own project

If you don't want to use the infrastructure generated by makeproject, you will need to :

C++ API
Run the NDDL parser yourself as specified here.♦
Add the directories $EUROPA_HOME/include and $EUROPA_HOME/include/PLASMA to your
include path

♦

Link in the EUROPA libraries from $EUROPA_HOME/lib.♦

•

Java API
You don't have to run the parser externally, but can just use the method
PSEngine.executeScript("nddl",nddlScript).

♦

Add the following files from $EUROPA_HOME/lib to your classpath : nddl.jar, PSEngine.jar,
PSUI.jar

♦

•

In both cases, make sure $EUROPA_HOME/lib is in your LD_LIBRARY_PATH

Building your own project 3

	tmpUntxXdtracpdf

